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1. Fire Behavior

Introduction

The complex interactions between environmental variables and the structure or
processes occurring at the fuel level can cause fire to behave in a variety of ways. In
general, the main drivers of behavior can be fuel bed structure, slope characteristics,
fuel moisture and wind characteristics (Scott, 2012). Depending on the magnitude of
each of these variables, fire behavior can be expressed in different dimensions: Rate
of spread, Residence time, Flame Length, Heat release, Fireline intensity, among
others (Castro Rego et al., 2021). Within these, the most important estimators of the
potential damage produced by a fire just after the start of ignition are the Rate of
Spread (ROS) and Flame Length (FL) (Cardil et al., 2021). In operational environments,
these are very important to measure. As a result, it is critical to make decisions based
on a quick and accurate assessment of these variables. It is possible to predict other
variables related to fire behavior from rapid field measurements of ROS and FL, which
can be a good first perspective of risk conditions for operational planning (Rothermel
& Deeming, 1980).

As new fire regions are emerging and so planning and suppression efforts are
increasing in these, it is important to share state of the art knowledge from more
prepared regions. This article aims to provide basic guidelines on fire behavior
concepts. It also aims to describe practical methods for rapidly estimating critical fire
behavior parameters in order to quickly qualify and understand the hazard at the
start of a fire in the field.

Pyrolife Project Work Package 1 Deliverable 1.5
Simple guidelines for northwest European stakeholders to collect fire behavior and fueld moisture data



Fire behavior metrics

Rate of spread (ROS)

The most known descriptor of fire behavior is defined as the spread rate in the
direction normal to the fire line. In this hypothetical circular-shaped fire, it could be
defined as the radial rate of spread, which is the rate of spread in the direction normal
to the perimeter at any point (Richards, 1995). It is usually measured in meters or
feet per minute. Wind speed, fuel moisture, and terrain slope are the main factors
governing the variation of the flame spread rate, according to empirical
measurements (Johnston et al., 2008). Given the specific characteristics of the
landscape, these variables cause the fire to take different shapes, both on a coarse
scale (weather, synoptic conditions) and on a more local scale (terrain, wind
direction, fuel moisture). If the fire changes shape, it also indicates that it is spreading
at different rates across the landscape, so the most important rate of spread is that of
the fire's head, which is usually the fastest.

In a more operational setting, measurements on this variable allow us to project the
area burned within a time interval for planning purposes, as well as identify
landscape elements at risk. This allows us to manage the types of resources that will
be used based on projected losses as the fire burns. The ability to determine
evacuation actions is a critical benefit of measuring this variable at the start of a fire.

For a quick field measurement of the rate of spread, two distinguishable elements,
such as colored sticks, must be present in the vicinity of the fire. It is important to
note that the location chosen for this exercise must consider an a priori assessment
of the danger conditions for the personnel. The two distinguishable elements must
be separated by a fixed distance in meters and oriented in the same direction as the
fire. Wait for the flames to pass through the location where the measurement was
taken, and then use an analog or digital device with a stopwatch to time how long it
takes to get from one element to the other. Table 1 provides a practical guide for
estimating ROS in the field.

Table 1. Practical Guide for On-field measurement of ROS

Distance [m] ROS
5m 10 m 20 m [m/min]
107 00~ 207 00”7 40’ 0.5
‘1[ 40" 3[ 20" 6[ 40" 3
Time
) 30”7 17 00” 27 00~ 10
[Min’ Sec”]
15~ 30~ 1’ 20
06~ 127 24" 50
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Flame length (FL)

It is the distance between the flame's tip and the surface of the fuel being burned
(Khakzad et al., 2018). It is an important variable to measure because it accounts for
the fire's power, providing guidance for various fire management decisions,
particularly those pertaining to operational safety. Fires with flame lengths greater
than 2.5 meters have been classified as High Intensity and High Danger (Ager et al.,
2013; Jahdi et al., 2022).

The tip of the flame is difficult to identify because it is in constant motion and
depends on the observer's point of view. This variable can be measured using
photographs with a scale within them. Figure 1 depicts the difference between flame
length and height, another fire behavior measurement.

Figure 1. Flame Length measurement scheme. Red line indicates Flame Height and Blue line indicates
Flame Length
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Heat released per unit area (HPA)

Amount of heat emitted per unit area during the flaming phase. It depends on the
energy content of the fuels and the amount of fuel being burned at the instant. In
general, woody fuels have higher heat content than herbaceous fuels.

HPA=H*W

H is the amount of energy released per unit mass, dependent on the type of fuel [k]/kg]
W is the amount of fuel consumed per unit area [kg/m2].

Fireline intensity (FLI)

Itis the rate of heat emitted per unit length of the fire front, also known as the Byram
fire line intensity. It is expressed in kW/m. It is the indicator that represents much of
the information needed for operation simulation or planning. Originally, it is
calculated using the following formula:

FLI = HPA * ROS

HPA is the heat emitted per unit area [k]/m2] and ROS is the rate of propagation [m/min].

This can be translated as follows: the faster the spread, the less heat directed to the
site for the same fireline intensity. Slow-moving fires will concentrate a lot of heat
on the site if they have the same fireline intensity as fast-moving fires. If this seems
unlikely, keep in mind that the example condition is for the same fireline intensity.
not just fast and slow fire.

The physical relationships between different fire behavior parameters, according to
Byram (1959), can be reduced to estimate the intensity as a function of flame length.
The following equation, according to the scheme and objectives of this work,
provides a faster and more practical approach to estimating this in the field.

FLI = 259 FL217
FL is Flame Length [m]

This provides a practical method for estimating critical fire behavior parameters such
as FLI. However, when measuring flame length, it is critical to concentrate on
reducing the sources of error.
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Fuel Type to Fire Behavior

It is critical to have a perspective on the types of fuels that are distributed, whether
for preventive intervention efforts on the landscape or for suppression of active fires.
The composition of fuels in the landscape, defined as the variety, abundance, and
distribution of fire-prone vegetation, must be considered, and it is the responsibility
of wildland fire professionals to relate this to potential fire behavior. Scott and Burgan
(2005) described various structural types of fuels, allowing us to associate them with
potential fire behavior.

Grass Fuel

Structurally, this type of fuel can vary from grasslands with high grazing intensity to
natural grasslands with low or high density. Depending on the case, the speed of fire
propagation in this type of ecosystem changes drastically (Cheney et al., 1998),
ranging from average speeds and low flame lengths to extreme speeds with long
flame lengths, respectively. This depends on the density and length of the grasses.

The behavior is extremely dynamic. The moisture content of fuels has a significant
impact on the behavior of this type of vegetation, particularly the rate of spread. In
many cases, the sensitivity between these variables explains the abrupt transition
from live fuel to death.

Grass-Shrub Fuel

It behaves in a very similar way to herbaceous fuel, it is also sensitive to variations in
live fuel moisture, but this sensitivity varies as a function of the relative proportion
of grasses and shrubs in the fuel load. The above emphasizes the idea of how
important the presence of herbaceous fuel is as a driver of behavior.

Shrub Fuel

The proportion of live or dead branches/leaves, as well as the presence and amount
of litter, are the main drivers of fire behavior in this type of fuel. The flame length in
this type of fuel is longer, depending on the fuel load, than in herbaceous fuels, but
the rate of spread is lower in general.

Timber-Litter Fuel

This case depicts structures with a high concentration of forest and woody material.
The amount of dead woody material is the main structural driver in this type of fuel.
The influence of live fuel on fire behavior is minimal. When compared to other fuel
types, this type has a slower rate of spread and a shorter flame length.
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Capacity of Control

Tedim et al. (2018) redefine previous work and classify different types of fires based
on how difficult they are to suppress. The latter variable described in this work is a
qualitative type of reduction that provides us with a highly useful score for wildland
fire crews to assess the hazard.

This approach is practical because it is evaluated in terms of the variables already
described above, making it simple to obtain a quick estimate of both hazard and
operability for suppression.

Table 2. Thresholds for Capacity of Control Description

Flame Firelir'le Rate of Spread .
Length Intensity Capacity of
- N [m/min] Control
<15 <500 <5 (GraZsllaSnds) Fairly easy
<25 500 - 2,000 <15 ( Gra:jgn s) Moderately difficult
25-35 | 2,000 - 4,000 (Wo;dzlgn ds) | (Shrub /éfaislan ) Very diffcult
3.5-10 18%%6 (Wo;clslgnds) (Shrub/<G1rg(s)slands) Extremely difficult

If values higher than those in the table above are estimated in the field, the fire is
classified as an extreme event. Control capacity becomes nearly impossible in these
situations. It is critical to consider the difficulty, and especially the impossibility, of
carrying out suppression maneuvers, as an indicator within the planning that can be
reflected in the reduction of accidents and deaths.
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2. Fuel Moisture

Introduction

Fuel moisture is a primary determinant of fuel flammability, ignition, and rate of
spread; therefore, being able to accurately determine fuel moisture content is
integral to predicting wildfire danger and behaviour (Matthews, 2014; Scarff et al.,
2021). Direct fuel moisture measurements calculated from fuel samples collected in
the field are generally considered to provide the most accurate measurements
(Matthews, 2010); however, it is important to minimize any introduction of errors
through the sampling process. We present here a protocol for collecting fuel moisture
data for common northwest European fuel types. These guidelines have been adapted
from (Norum & Miller, 1984) and are in line with the protocols used in other
northwest European fuel moisture research (e.g., Taylor et al. ( 2021) and Clay (2022))
to ensure comparability of data collected across stakeholders. Having clear guidelines
for collecting field measurements allows potential sources of error to be controlled,
and we have modified these guidelines over the course of multiple sampling
campaigns with different stakeholder groups to optimize the clarity of instructions.
Due to the intensity of collecting fuel moisture measurements, it is not always
possible to have one person collecting all the samples and this means sampler bias
may need to be accounted for post-collection rather than through sampling design
(Supplementary).

Sampling Preparation
The following equipment should first be prepared (Figure 1):

- Aluminum, rust proof, screw lid tins for storing collected samples. Prior to
collection tins should be permanently numbered, weighed to the nearest
0.001 g and recorded (tare weight)

- Parafilm for sealing tins

- 2 pairs pruning shears (one for live, one for dead material)

- Soil corer (we use inexpensive apple corers)

- Pen, clipboard and recording sheets

- Laboratory equipment: fine balance (3 dp), drying oven

Samples should be collected as close to the warmest part of the day as possible and
between 1100-1700 where samples are collected for fire research or management
purposes. This time window allows for morning dew to evaporate and constant
humidity levels. Where repeat sampling events are anticipated, samples should be
collected as close to the same time as possible, or time-of-day should be accounted
for in post-collection analyses as it may contribute to the observed fuel moisture
variation.
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Sampler name:
Site:

Time:

Fuel Layer # Tin #

Figure 1: Fuel moisture sampling equipment, including example data sheet (left) and inexpensive soil

corer (bottom right) and garden shears (top right).

Fuel Moisture Sampling Procedure

General Procedure

1.

On arrival to the sampling site, place sample tins in a shady spot and prepare
the data sheet. Record site name, date, time, name of observer and the fuel
layers to be collected.

Set out a 25 m transect covering a representative area of the sampling site.
Using the appropriate equipment, walk along the transect taking the same
size sample from each plant in a random manner, one fuel layer at a time (see
subsequent sections for specific fuel layers for each fuel type). Try to ensure
consistency in the amount of material collected (we suggest filling the tin 34
full of samples across the full transect).

As soon as the material has been collected for one tin, replace the lid tightly
and seal it with parafilm. Ensure there is no dirt on the outside of the sample
tin.

Record the tin number next to the correct fuel layer on the data sheet.
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Heather (Calluna vulgaris) Sampling Procedure

Calluna vulgaris is sampled from the following layers of dead and live plants, adapted
from (Davies et al., 2010), taken vertically through the centre of the shrub to avoid
differences from exposed versus sheltered edges (Figure 2):

Nk W=

Live top shoots and canopy

Live lower canopy and remaining stems (<0.25-inch diameter)
Dead top shoots and canopy

Dead lower canopy and remaining stems (<0.25-inch diameter)
Moss layer

Litter layer

Organic layer

Complete steps 1-5 from the general procedure, collecting each fuel layer in step 3
in the following way:

3a. Collect sprigs from approximately 10 live Calluna plants randomly along the

transect. Clip the sprigs into small one-inch segments, separating the top
shoots and canopy into one tin and the lower canopy and remaining stems
into another. Try to take the same approximate mass for each sample of the
same material

3b. Follow the same process above for dead Calluna plants
3c. Collect the top 2 cm of the moss layer by grasping a clump of moss and

gently pull them up from the moss layer. Clip off the highly decomposed
dark brown moss at the base of the layer

3d. Collect the top 2 cm of the litter layer by collecting the dead litter on top of

the soil, found under heather bushes

3e. Using a soil corer, collect 5 samples of the organic layer material along the

transect and place into a tin. The organic layer lies below the litter layer and
above the mineral soil. It includes litter material that has decomposed to the
point that the individual pieces are no longer identifiable. We use the soil
corer to extract the top 5 cm of organic material.
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Figure 2: Annotated heather bush (a) showing live (yellow circle) and dead (purple circle) material,
and photo (b) of live heather canopy (red circle) and stems (blue circle). Dead heather canopy and
stems are the similarly distinguished but for a fully dead section of the plant.

Gorse (Ulex europaeus) Sampling Procedure
Ulex will be sampled from the following layers of live and dead plants (Figure 3):

Live canopy

Live stems (<0.25-inch diameter)
Dead canopy

Dead stems (<0.25-inch diameter)
Litter layer

AR .

Complete steps 1-5 from the general procedure, collecting each fuel layer in step 3
in the following way:

3a. Collect samples from 10 live gorse plants randomly along the transect. Clip
the samples into small one-inch segments, separating the canopy from the
stems in two tins. Try to take the same approximate mass for each sample of
the same material

3b. Follow the same process above for dead gorse

3c. Collect the top 2 cm of the litter layer by collecting the dead litter on top of
the soil, found under gorse bushes
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Figure 3: Gorse bush (a) showing live (yellow circle) and dead (purple circle) material, and examples
(b) of gorse live canopy (red) and live stems (blue). Dead canopy and stems are similarly distinguished
but for a fully dead section of the plant.

Bracken (Pteridium aquilnum) Sampling Procedure
Bracken is sampled from the following fuel layers of live and dead plants:

Live stems
Live leaves
Dead stems
Dead leaves

W=

Complete steps 1-5 from the general procedure, collecting each fuel layer in step 3
in the following way:

3a. Collect samples from 10 live bracken plants randomly along the transect. Clip
the stems and leaves into small one-inch segments, separating them in two
tins (Figure 4). Try to take the same approximate mass for each sample of the
same material

3b. Follow the same process above for dead bracken

Molinia Sampling Procedure

Live and dead Molinia is collected following steps 1-5 in the general procedure. Live
Molinia (live blades) and dead Molinia (dead blades) are collected in separate tins
(Figure 4).
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Forest Litter Sampling Procedure

Fine forest litter is sampled from the following fuel layers:

1.
2.
3.

Forest mixed leaf litter
Dead twigs
Organic material

Complete steps 1-5 from the general procedure, collecting each fuel layer in step 3
in the following way:

3a.

3b.

3c.

Collect 10 samples of mixed leaf litter along the transect from the forest floor,
taking care to only pinch the litter and not take any organic material

Collect approximately 20 samples of dead twigs of the same size along the
transect. Clip the twigs into one-inch segments in one tin. Take samples from
material resting on the ground but do not collect twigs directly
touching/buried in litter, organic material or soil. Each sample must be
detached from its growth point and less than 0.25-inches in diameter.

Using a soil corer, collect 5 samples of the organic layer material along the
transect and place into a tin. The organic layer lies below the litter layer and
above the mineral soil. It includes litter material that has decomposed to the
point that the individual pieces are no longer identifiable. We use the soil
corer to extract the top 5 cm of organic material.

Laboratory Procedure

Preheat drying oven to 80 °C

Remove parafilm from tin lid, ensure no tape or debris is stuck to the tin
Weigh the tin (keep the lid on) to 3 dp and record this value as the wet
weight. Reset the scales to zero before each sample is weighed.

Weigh all of the samples in this manner.

Remove the lid and place it under the tin as you put the sample in the drying
oven. Space the samples evenly in the oven so air can circulate around the
tins (Figure 4). Record the date and time the samples were put in the oven.
Dry the sample for at least 48 hours at 80 °C.

At the end of the drying time, take samples from the oven in batches, quickly
replacing the lid tightly as each tin is removed to prevent absorption of
moisture by air. Close the oven door in between removing samples from the
oven.

Allow the tins to cool to room temperature before reweighing them (as
outlined in step 3) and record the dry weight on the laboratory sheet.
Calculate percentage of dry moisture content as per Equation 1.
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Fuel moisture content: the ratio of the weight of the water contained to the dry
weight of the material, expressed as a percentage.

(sample wet weight — sample dry weight)

(100)

sample dry weight — container tare weight

10. After fuel moisture content has been calculated and odd values have been
rechecked, discard the sample and clean the tins for reuse. Leave to air dry
completely before replacing lids and storing.
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Fig. 1a Dead bracken stems Fig. 1b Dead bracken leaves

A | | L
Fig. 2a Live heather canopy

Fig. 3a Dead gorse canopy Fig. 3b Dead gorse stems

Fig. 4c Gorse litter Fig. 5 Dead Molinia

Figure 4: Examples of common northwest European fuel samples.
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Supplementary

Accounting for sampler bias improves confidence in fuel moisture
content field measurements
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Introduction

Fuel moisture is a primary determinant of fuel flammability, ignition and rate of
spread; therefore, being able to accurately determine fuel moisture content is
integral to predicting wildfire danger and behaviour (Matthews, 2014; Scarff et al.,
2021). Where feasible, direct measurements of fuel moisture content are generally
preferred; however, large-scale sampling campaigns are intensive and can require a
lot of people to adequately represent the variability across the research area
(Matthews et al., 2010). Where direct measurements are not feasible, various models
have been developed to indirectly monitor fuel moisture, particularly across long
time periods (e.g.,, Cawson et al., 2020; Miller et al., 2022). While we routinely
quantify sources of uncertainty associated with fuel moisture models, field-based
fuel moisture measurements also include uncertainties within their measured
values. It is important to be able to extract values of fuel moisture from other sources
of variability to optimise accuracy of measurements and isolate the underlying
controls of interest. In doing so, we improve our scientific understanding of fuel
moisture variability and our ability to accurately model fuel moisture for fire
management.
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Sampler bias in fuel moisture monitoring

Where fuel moisture campaigns require multiple samplers to collect fuel samples,
between-sampler differences (referred to here as sampler bias) become a relevant
source of variability in measurements. The importance of human bias in field surveys
has been reported in other environmental studies, particularly citizen science
projects measuring species presence-absence and quantifying percentage cover
(Morrison (2016) and references therein). Between-sampler differences in fuel
moisture measurements can arise through different levels of experience, motivation
and interest and consequent variation in sampling effort. This bias is influenced by
time. Previous citizen science research, particularly over longitudinal studies, report
a “learner effect”, where volunteers show improvements in their data collection
abilities over time (Dickinson et al., 2010). However, the effect of time can also be
negative, as physical and mental fatigue can create variation in sampling effort
(Moore et al., 2011). Some sources of sampler bias can be controlled through careful
sampling design but sampler bias cannot be completely prevented as individuals
following the same protocol are naturally likely to interpret instructions differently,
and this bias is incorporated into the resulting measurements. Fuel moisture
measurements that do not account for sampler bias are less accurate as there is no
way to extract the measurement from the overall random error (Bird et al., 2014;
August et al., 2020).

Research questions

We conducted an intensive fuel moisture sampling campaign to assess the influence
of sampler bias on direct fuel moisture measurements of Calluna vulgaris within a
temperate fire-prone landscape. The complexity of live fuel moisture in temperate
environments is not well represented by existing fuel moisture models so this
research aids efforts to isolate the processes that influence fuel moisture within these
landscapes. However, this approach is more broadly applicable for estimating the
sampler error in fuel moisture measurements and enabling a confidence range to be
applied to estimates used in a practical setting. Accounting for sampler bias also
opens opportunities for large-scale fuel moisture monitoring campaigns using citizen
science, which is necessary for understanding fuel moisture dynamics at regional and
national scales. To this end, we address the following research questions: (1) to what
extent do between-sampler differences influence fuel moisture variability at the plot
scale? (2) Is the influence of sampler bias time and/or fuel layer dependent?
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Methods

Study site

The field campaign was completed by an undergraduate geography field class (n =
17) in the Lickey Hills Country Park, Birmingham, England. This site was selected as
it is representative of the type of heathland landscapes that are found throughout
temperate, fire-prone environments. Two Calluna-dominated plots were selected,
and samplers were evenly split across the two plots to minimise overall destruction
of Callunain one location. The two plots were both situated on a hillslope on the same
soil type within Lickey Hills and contained mainly Calluna with patches of bracken
interspersed.

Fuel moisture sampling campaign

A sample set comprised seven Calluna fuel layers: live canopy; live stems; dead
canopy, dead stems; moss; litter; and organic layer (top 5 cm of organic material
above mineral soil). Each sampler collected one set of samples every hour between
1000 and 1800, resulting in nine samples per sampler and a total of 1071 samples
overall. None of the samplers had monitored fuel moisture before, and all samplers
received the same protocol adapted from Norum & Miller (1984), a briefing prior to
beginning sampling and advice during the first hour of sampling to ensure correct
species identification and sample size for laboratory analysis. Briefly, each sampler
randomly collected fuel clippings across the entire plot area (ca. 10 different plants)
to ensure samples captured within-plot variability. We stored clippings in an
aluminium tin with a screw-fit lid sealed with masking tape.

We calculated gravimetric fuel moisture content (mass of water per mass of sample,
%) following Norum & Miller (1984 ). We weighed the tinned samples (wet weight) as
soon as possible the morning after collection. We then dried the samples for at least
48 h at 80 °C and reweighed them (dry weight).

Data analysis

The distribution of fuel moisture content for all fuel layers except for moss and
organics were sufficiently similar between the two sampling plots to analyse all the
samplers together. We analysed the moss and organic layer fuel moisture
measurements separately for each plot to account for between-plot variability in
these fuel layers. We used quadratic mixed effects models to analyse the random
effect of sampler on fuel moisture variation with time as the fixed effect. We
calculated the model marginal R? (variation explained by the fixed effects) and
conditional R? (variation explained by both fixed and random effects). The difference
represents the amount of variation explained by sampler bias. The standard deviation
of the random effect can be interpreted as a confidence range to adjust fuel moisture
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estimates to account for between-sampler differences. We conducted all statistical
analyses in R version 4.1.2 (R Core Team, 2022) using packages Ime4 (Bates et al.,
2015) and MuMIn (Barton, 2022).

Results

Between-sampler fuel moisture variability

Between-sampler differences led to high variability in fuel moisture content
measurements across all fuel layers and time steps (Figure 1). Individuals sampling
within the same plot at the same time obtained different fuel moisture content
measurements up to a maximum range of 313% (moss plot A), 297% (organic plot A),
249% (litter), 210% (organic plot B), 105% (moss plot B), 76% (live canopy), 73% (dead
canopy), 68% (dead stems) and 39% (live stems). Most fuel layers had a low-end
distribution of median fuel moisture content, with a high upper quartile, upper
extreme and high fuel moisture outliers. Live Calluna had more of an even
distribution of above and below median fuel moisture content measurements.

There was no obvious diurnal pattern in sampler variability across the day for any of
the fuel layers. However, median live and dead Calluna fuel moisture content was
highest at 1000 and generally decreased throughout the day before starting to
increase again at the end of the sampling period. This diurnal pattern was not evident
in the wettest fuel layers.
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Figure 1: Sampler variability in fuel moisture content measurements for each fuel layer hourly from

1000 to 1800.
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Modelling sampler bias in fuel moisture content

Table 1: Summary statistics from the mixed effects model of diurnal fuel moisture variability with
sampler as a random effect.

Fuel layer ll\{/gi/rginal Eg;ditional Coeffi_cient of  SD of the
% % variation random effect

live canopy 17.92 37.09 0.07 7.61

live stems 13.00 32.82 0.04 3.64
dead canopy  13.06 14.33 0.04 1.47
dead stems 1.75 5.65 0.10 2.65
moss A 0.07 6.97 0.20 21.81
moss B 10.27 36.68 0.21 14.64
litter 2.04 46.12 0.48 27.44
organic A 2.10 7.62 0.08 17.83
organic B 1.38 35.23 0.23 28.43

We used mixed effect models to examine the influence of time-of-day (marginal R?)
and sampler bias (difference between conditional and marginal R?) in explaining the
overall model (conditional R? ) variation in fuel moisture. Time-of-day has a similar
influence on Calluna canopy fuel moisture, regardless of whether the canopy material
is live or dead. However, samplers are substantially more consistent in sampling dead
Calluna than live Calluna. Between-sampler differences contribute to explaining 19%
of the measured live fuel moisture variability. With the exception of the dead canopy,
sampler bias explains more fuel moisture variability than time-of-day. Sampler bias
is greatest in litter samples (44% variation explained) overall and organics (34%) and
moss (26%) at plot B. These fuel layers also have a high coefficient of variation but the
two are not always analogous. Dead stems fuel moisture has a coefficient of variation
of 0.1 despite a high degree of consistency between different sampler measurements.
Conversely, the coefficient of variation of live Calluna is lower than dead stems while
between-sampler variability is substantially higher.

The standard deviation of the sampler effect gives an estimate of the range of
confidence in fuel moisture values as a result of between-sampler differences. Live
canopy Calluna fuel moisture content measurements could be roughly expected to
range 8% above or below the actual measurement, due to between-sampler
differences. This range is up to +27% for litter samples.
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Discussion

Quantifying sampler bias in fuel moisture estimates

Seventeen samplers collecting fuel moisture samples at the same time within the
same site measured very different fuel moisture contents. With the exception of dead
canopy material, sampler bias was more important than time-of-day in explaining
fuel moisture variation at the plot scale. Significant attention is given to diurnal fuel
moisture variability in rapidly drying fine fuels (e.g., Slijepcevic et al., 2013; Bilgili et
al., 2019; Zhang & Sun, 2020); however, we have shown that sampler bias can exceed
diurnal drying patterns and should also be considered in fuel moisture dynamic
studies. Previous species identification citizen science studies observed a temporal
pattern in observer bias related to both increasing experience (Dickinson et al., 2010)
and fatigue (Morrison, 2016), but we did not observe any consistent trend in sampler
bias through the sampling period.

Sampler differences explained the greatest amount of variation in litter material,
followed by organics and moss at plot B and live Calluna. Importantly, it is not
exclusively high absolute values of fuel moisture that are associated with large
between-sampler differences. Fuel layers that are harder to sample and require more
subjective decision-making by the sampler may result in greater sampler bias. Even
with protocols and training, subjective decision-making and variation in sampling
effort influences sampler bias in these layers. For instance, samplers must identify
the top 2 cm of moss and litter material, remove any attached decomposing material
and ensure fuel sample separation where litter material is interspersed in patches of
moss. Samplers were also highly inconsistent in sampling live Calluna. Subjectivity
in clipping live Calluna can incorporate sampler bias in the length of sprigs collected,
where samplers choose to separate the live canopy from the live stems and even
correctly identifying live from dead Calluna. A lack of confidence in the latter could
lead to subconscious targeting of the greenest live material and missing the brown
live material that is harder to identify.

At the other end of the scale, samplers were highly consistent in sampling dead
Calluna but the coefficient of variation was higher than expected for having low
sampler bias. This is attributable to outliers resulting from the misidentification of
live Calluna as dead. Where dead fuel is correctly identified, this material is easy to
collect following the sampling protocol and sampler bias is low. Sampler bias in this
case is mainly a concern where brown Calluna is incorrectly identified as dead.
Where dead fuel moisture is the most important variable, sampler bias may be less
important to account for than time-of-day and illogical values from
misidentifications can be filtered out of the dataset.

Individual sampling patterns throughout the day reflected three different types of
sampler bias (data not shown): those who were consistently extreme (i.e., samples
were always wetter or drier than average); those who were consistent overall (i.e.,
samples were around the average fuel moisture throughout the day); and those who
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were inconsistently extreme (i.e., samplers had both the driest and wettest samples
from hour to hour).

From the results of this campaign, we identify a rough confidence range that can be
applied to fuel moisture measurements to account for the uncertainty associated
with between-sampler differences. These adjustments may be useful in practical
applications, particularly where there is long-term, irregular fuel moisture sampling
carried out by different individuals. It may be beneficial for decision making to give
a range of values of fuel moisture content that will be more accurate than a single
value, knowing that different samplers inherently introduce bias into measurements.

Controlling for sampler bias through sampling design

Carefully considered sampling protocols can minimise sources of sampler bias prior
to field collection (Dickinson et al., 2010; Morrison, 2016). We reduced sampling
effort variability by having a clear protocol for where, when and how samples were
to be collected. We also controlled for between-sampler differences by recruiting
volunteers from the same cohort with no prior fuel moisture sampling experience
and provided them with the same level of training

Accounting for sampler bias in data analysis

Where sources of bias cannot be controlled through experimental design, statistical
tools can be used to remove sampler bias from other sources of error (Bird et al.,
2014; August et al., 2020). Statistical models such as mixed effects models (Aagaard
et al., 2018) and machine learning tools like boosted regression trees (Cox et al.,
2012), random forests and artificial neural networks (Fink & Hochachka, 2012) have
been used in citizen science ecological studies. In this field campaign, we have used
mixed effects models to fit sampler as a random effect. Mixed effects models are
useful for quantifying the contribution of sampler bias and isolating this bias from
variables of interest and overall error. Mixed effects models require equal sample
sizes from each individual sampler, so this method is most useful when considered
at the sampling design stage or when the dataset is sufficiently large to filter (Zuur et
al., 2010).

Larger fuel moisture sampling campaigns than implemented here may require
greater flexibility in where and when samples are collected and who is recruited to
collect samples. In these situations, the collection of sampler metadata (e.g., sampler
experience, training received and profession (e.g., heathland land managers may
have greater familiarity and confidence in identifying fuel layers than others)) can
help to account for between-sampler differences. Fuel moisture samples should have
a sampler identifier to relate metadata metrics to fuel moisture content and can be
used to control sampling designs to prevent confounding with covariates, filter
databases for analyses and include metrics in models to isolate fuel moisture
measurements from sources of sampler bias (August et al., 2020).
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Citizen science for fuel moisture monitoring

Accounting for sampler bias allows us to utilise citizen science approaches to scale
up field studies to understand fuel moisture dynamics at broad spatiotemporal scales
that cannot be captured by traditional, controlled field experiments (Dickinson et al.,
2010). This is important for developing robust fuel models and is especially
important in environments where cross-scale fuel moisture dynamics are not fully
understood. Considering potential sampler bias sources prior to conducting large-
scale fuel moisture campaigns can allow for targeted collection times, locations and
sampler metadata to isolate spatiotemporal trends in fuel moisture variability.

Implications

Sampler bias can lead to high variability in fuel moisture content measurements
within the same plot, fuel layer and time of day. With this knowledge, we can give a
range of confidence in fuel moisture estimates associated with sampler bias that will
be more accurate than a single value. If sampler bias is not accounted for in fuel
moisture studies, then it adds to the overall model error and may obscure important
trends and dynamics. It is therefore important to isolate this bias to develop fuel
moisture models, improve the accuracy of fuel moisture measurements and upscale
fuel moisture monitoring campaigns.
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